6 resultados para Cumputer algorithms

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The United States National Ice Center (NIC) provides weekly ice analyses of the Arctic and Antarctic using information from ice reconnaissance, ship reports and high-resolution satellite imagery. In cloud-covered areas and regions lacking imagery, the higher-resolution sources are augmented by ice concentrations derived from Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSMII) passive-microwave imagery. However, the SSMII-derived ice concentrations are limited by low resolution and uncertainties in thin-ice regions. Ongoing research at NIC is attempting to improve the utility of these SSMII products for operational sea-ice analyses. The refinements of operational algorithms may also aid future scientific studies. Here we discuss an evaluation of the standard operational ice-concentration algorithm, Cal/Val, with a possible alternative, a modified NASA Team algorithm. The modified algorithm compares favorably with CallVal and is a substantial improvement over the standard NASA Team algorithm in thin-ice regions that are of particular interest to operational activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The emergence of wavelength-division multiplexing (WDM) technology provides the capability for increasing the bandwidth of synchronous optical network (SONET) rings by grooming low-speed traffic streams onto different high-speed wavelength channels. Since the cost of SONET add–drop multiplexers (SADM) at each node dominates the total cost of these networks, how to assign the wavelength, groom the traffic, and bypass the traffic through the intermediate nodes has received a lot of attention from researchers recently. Moreover, the traffic pattern of the optical network changes from time to time. How to develop dynamic reconfiguration algorithms for traffic grooming is an important issue. In this paper, two cases (best fit and full fit) for handling reconfigurable SONET over WDM networks are proposed. For each approach, an integer linear programming model and heuristic algorithms (TS-1 and TS-2, based on the tabu search method) are given. The results demonstrate that the TS-1 algorithm can yield better solutions but has a greater running time than the greedy algorithm for the best fit case. For the full fit case, the tabu search heuristic yields competitive results compared with an earlier simulated annealing based method and it is more stable for the dynamic case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we investigate the problem of routing connections in all-optical networks while allowing for degradation of routed signals by different optical components. To overcome the complexity of the problem, we divide it into two parts. First, we solve the pure RWA problem using fixed routes for every connection. Second, power assignment is accomplished by either using the smallest-gain first (SGF) heuristic or using a genetic algorithm. Numerical examples on a wide variety of networks show that (a) the number of connections established without considering the signal attenuation was most of the time greater than that achievable considering attenuation and (b) the genetic solution quality was much better than that of SGF, especially when the conflict graph of the connections generated by the linear solver is denser.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multicommodity flow (MF) problems have a wide variety of applications in areas such as VLSI circuit design, network design, etc., and are therefore very well studied. The fractional MF problems are polynomial time solvable while integer versions are NP-complete. However, exact algorithms to solve the fractional MF problems have high computational complexity. Therefore approximation algorithms to solve the fractional MF problems have been explored in the literature to reduce their computational complexity. Using these approximation algorithms and the randomized rounding technique, polynomial time approximation algorithms have been explored in the literature. In the design of high-speed networks, such as optical wavelength division multiplexing (WDM) networks, providing survivability carries great significance. Survivability is the ability of the network to recover from failures. It further increases the complexity of network design and presents network designers with more formidable challenges. In this work we formulate the survivable versions of the MF problems. We build approximation algorithms for the survivable multicommodity flow (SMF) problems based on the framework of the approximation algorithms for the MF problems presented in [1] and [2]. We discuss applications of the SMF problems to solve survivable routing in capacitated networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The emergence of Wavelength Division Multiplexing (WDM) technology provides the capability for increasing the bandwidth of Synchronous Optical Network (SONET) rings by grooming low-speed traffic streams onto different high-speed wavelength channels. Since the cost of SONET add-drop multiplexers (SADM) at each node dominates the total cost of these networks, how to assign the wavelength, groom in the traffic and bypass the traffic through the intermediate nodes has received a lot of attention from researchers recently.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We explore the problem of budgeted machine learning, in which the learning algorithm has free access to the training examples’ labels but has to pay for each attribute that is specified. This learning model is appropriate in many areas, including medical applications. We present new algorithms for choosing which attributes to purchase of which examples in the budgeted learning model based on algorithms for the multi-armed bandit problem. All of our approaches outperformed the current state of the art. Furthermore, we present a new means for selecting an example to purchase after the attribute is selected, instead of selecting an example uniformly at random, which is typically done. Our new example selection method improved performance of all the algorithms we tested, both ours and those in the literature.